Formations au coeur des technologies

Essayer, tester, échanger les bonnes pratiques, partager les retours d'expériences, ...
toutes nos formations sont disponibles à distance (classes virtuelles) et en centre de formation (présentiel), au choix.
Vous pouvez même changer de modalité en cours de formation, si vous avez des contraintes : par exemple, commencer en présentiel et continuer les jours suivants à distance.
Les outils pédagogiques et l'infrastructure de travaux pratiques mis à disposition sont accessibles depuis nos locaux, ou depuis votre entreprise ou votre lieu de télétravail, à volonté
N'hésitez pas à tester nos formations et nos serious games !

Formation : Cycle certifiant Administrateur BigData

Durée18 jours
Code coursCB095
Inscription

Public:

Chefs de projet,exploitants, administrateurs

Objectifs:

Comprendre les caractéristiques d'une infrastructure BigData, les contraintes de production et de supervision. Savoir définir les points à surveiller, et connaître les outils et solutions disponibles pour l'administration BigData.

Connaissances préalables nécessaires:

Connaissances générales des systèmes d'information et des outils et techniques d'exploitation et d'administrations

Déroulé pédagogique


Comprendre les principaux concepts du Big Data ainsi que l'écosystème technologique d'un projet Big Data
Durée : 2h
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
L'essentiel du BigData : calcul distribué, données non structurées. Besoins fonctionnels et caractéristiques techniques des projets. La valorisation des données. Le positionnement respectif des technologies de cloud, BigData et noSQL, et les liens, implications.
Concepts clés : ETL, Extract Transform Load, CAP, 3V, 4V, données non structurées, prédictif, Machine Learning.
L'écosystème du BigData : les acteurs, les produits, état de l'art. Cycle de vie des projets BigData.
Savoir analyser les difficultés propres à un projet Big Data
Durée : 2h
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Rôle de la DSI dans la démarche BigData. Gouvernance des données: importance de la qualité des données, fiabilité, durée de validité, sécurité des données
Emergence de nouveaux métiers : Data-scientists, Data labs, Hadoop scientists, CDO, ...
Intégration avec les outils statistiques présents et les outils BigData futurs.
Déterminer la nature des données manipulées
Durée : 5h
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Les différents modes et formats de stockage.
Les types de bases de données : clé/valeur, document, colonne, graphe. Besoin de distribution. Définition de la notion d'élasticité. Principe du stockage réparti.
Données structurées et non structurées, documents, images, fichiers XML, JSON, CSV, ...
Atelier : installation d'un lac de données Hadoop/HDFS

Atelier : démonstrations avec une base MongoDB et une base Cassandra sur des données de différents types.


Appréhender les éléments de sécurité, d'éthique et les enjeux juridiques
Durée : 3h30
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Les risques et points à sécuriser dans un système distribué.
Aspects législatifs et éthiques: sur le stockage, la conservation de données, ..., sur les traitements, la commercialisation des données, des résultats
Atelier : mise en évidence des problèmes liés à la réplication inter-régions et concernant les aspects juridiques des données : droits d'exploitation, propriété intellectuelle, ...


Etude des failles de sécurité sur une infrastructure Hadoop.
Exploiter les architectures Big Data
Durée : 3h30
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Les objectifs de la supervision, les techniques disponibles. La supervision d'une ferme BigData.
Objets supervisés. Les services et ressources. Protocoles d'accès. Exporteurs distribués de données.
Définition des ressources à surveiller. Journaux et métriques.
Application aux fermes BigData : Hadoop, Cassandra, HBase, MongoDB
Besoin de base de données avec agents distribués, de stockage temporel (timeseriesDB)
Produits : Prometheus, Graphite, ElasticSearch.
Présentation, architectures.
Les sur-couches : Kibana, Grafana.
Atelier : mise en oeuvre de prometheus pour la supervision d'une ferme Cassandra sur une infrastructure distribuée multi-noeuds.


Mettre en place des socles techniques complets pour des projets Big Data.
Durée : 3h30
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Etude des différents composants d'une infrastructure BigData :
Datalake : collecte des différents types de données
Stockage distribué : réplication, sharding, gossip, hachage,
Principe du schemaless, schéma de stockage, clé de distribution, clé de hachage
Systèmes de fichiers distribués : GFS, HDFS, Ceph. Les bases de données : Redis, Cassandra, DynamoDB, Accumulo, HBase, MongoDB, BigTable, Neo4j, ...
Calcul et restitution :Apport des outils de calculs statistiques
Langages adaptés aux statistiques, liens avec les outils BigData.
Outils de calcul et visualisation :R, SAS, Spark, Tableau, QlikView, ...
Caractéristiques et points forts des différentes solutions.
Atelier : mise en oeuvre du sharding avec une base de données MongoDB sur une infrastructure distribuée


Paragraphe:Cassandra
Cassandra
Durée : 2h
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Introduction
Historique, fonctionnalités de Cassandra, licence
Format des données,"key-value", traitement de volumes importants,
haute disponibilité, système réparti de base de données, ...
Installer et configurer le SGBD NoSQL Apache Cassandra
Durée : 3h30
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Installation et configuration
Prérequis. Plateformes supportées. Etude du fichier de configuration : conf/cassandra.yaml
Répertoire de travail, de stockage des données, gestion de la mémoire.
Atelier : démarrage d'un noeud et test de l'interface cliente cqlsh.


Appréhender le CQL (Cassandra Query Language)
Durée : 2h
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Commandes de base : connexion au système de base de données,
création de colonnes,insertion, modification recherche,
Le CQL : Cassandra Query Language.
Limitations du CQL.
Créer une base de données et manipuler ses objets
Durée : 3h30
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Utilisation de Cassandra
Création de bases et interrogation avec cql
Définition de la notion de consistance. Eléments en jeu : Commit.log, Memtable, Quorum
Comment écrire des requêtes ? Approches.
Atelier : premiers pas avec une base de données Cassandra pré-chargée mise à disposition sur l'infrastructure de travaux pratiques


Connaitre la notion de grappe au sein de la base de données
Durée : 3h30
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Gestion de la grappe.
Principe. Configuration des noeuds.
Notion de bootstrapping et de token.
Paramètres de démarrage des noeuds.
Réplication: topologie du réseau et EndpointSnitch.
Stratégie de réplication.
Méthode d'ajout de noeuds et suppression.
Architecture de stockage mémoire et disque dur, gestion des tombstones, bloom-filter
Atelier : mise en place d'une configuration de production (multi-datacenters, multi-racks)


Administrer et sécuriser un cluster Cassandra
Durée : 3h30
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Exploitation.
Gestion des noeuds Cassandra.
Sauvegardes, snapshots et export au format JSON.
Principe de cohérence, hinted_handoff, digest request et read repair.
Sécurité
Atelier : paramétrage, authentification et sécurisation de la base system_auth.


Gestion des rôles et des autorisations sur une application standard.
Support Hadoop et Spark
Durée : 3h30
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Principe de map/reduce. Implémentation Hadoop et intégration Hadoop/Cassandra.
Support Spark :
Description rapide de l'architecture spark.
Atelier : Mise en oeuvre depuis Cassandra. Execution d'application Spark s'appuyant sur une grappe Cassandra.


Supervision et performances
Durée : 5h
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Prometheus: apports et particularité de prometheus pour la supervision cassandra
Supervision avec nodetool.
Principe des accès JMX , exports JMX vers des outils de supervision.
Atelier : démonstration avec Prométheus et Grafana.


Performance :
Présentation de l'outil de test de performance Cassandra-stress
Atelier : mise en place d'un plan de stress et paramétrage.


Paragraphe:Elastic Stack
ElasticStack
Durée : 2h
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Présentation, fonctionnalités, licence
Positionnement Elasticsearch et les produits complémentaires : Kibana,X-Pack,
Logstash, Beats
Principe : base technique Lucene et apports d'ElasticSearch
Définitions et techniques d'indexation
Installation de base
Durée : 2h
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Prérequis techniques.
Installation avec les RPM
Outils d'interrogation
Durée : 2h
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Communication en RESTful avec le cluster
Interface http DevTools, travaux pratiques, démonstration
Traitement des données
Durée : 2h
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Structure des données. stockage, indexation
Format des données.
Conversion au format JSON des données à traiter.
Interrogations avec Search Lite et avec Query DSL (domain-specific language)
Notion de 'filtre' pour affiner des requêtes.
Autres composants
Durée : 2h
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Démonstrations de Logstash, Kibana et Beats
Intégration
ElasticStack
Durée : 2h
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Présentation de la pile elastic.
Positionnement d'Elasticsearch et des produits complémentaires : Kibana, Logstash, Beats, X-Pack
Principe : base technique Lucene et apports d'ElasticSearch. Fonctionnement distribué
Installation et configuration
Durée : 2h
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Prérequis techniques.
Installation depuis les RPM.
Premiers pas dans la console Devtools.
Etude du fichier : elasticsearch.yml et kibana.yml
Mise en place de la surveillance d'un cluster ES
Clustering
Durée : 2h
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Définitions : cluster, noeud, sharding
Nature distribuée d'elasticsearch
Présentation des fonctionnalités : stockage distribué, calculs distribués avec Elasticsearch, tolérance aux pannes.
Fonctionnement
Durée : 2h
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Notion de noeud maître,
stockage des documents, shard primaire et réplicat,
routage interne des requêtes.
Gestion du cluster
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Outils d'interrogation : /_cluster/health
Création d'un index : définition des espaces de stockage (shard), allocation à un noeud
Configuration de nouveaux noeuds : tolérance aux pannes matérielles et répartition du stockage
Cas d'une panne
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Fonctionnement en cas de perte d'un noeud :
élection d'un nouveau noeud maître si nécessaire, déclaration de nouveaux shards primaires
Exploitation
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Gestion des logs : ES_HOME/logs
Paramétrage de différents niveaux de logs : INFO, DEBUG, TRACE
Suivi des performances.
Sauvegardes avec l'API snapshot.
Paragraphe:HBase
Hadoop
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Rappels rapides sur l'écosystème Hadoop. Fonctionnalités.
Le projet et les modules : Hadoop Common, HDFS, YARN, Spark, MapReduce
Présentation HBase. Historique. Lien avec HDFS.
Comprendre l’architecture et le fonctionnement de HBase
Durée : 3h
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Définitions : table, région, ligne, famille de colonnes,cellules, espace de nommage, ...
Fonctionnalités : failover automatique, sharding, requêtage
HBase master node, Region Master, liens avec les clients HBase. Haute disponibilité. Consistance des données.
Présentation du rôle de Zookeeper.
Atelier : définition d'une architecture HBase en fonction de contraintes d'utilisation


Identifier les apports d’HBase en termes de stockage distribué des données
Durée : 3h
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Format des données dans HBase. Comparaison avec d'autres bases clés/valeurs.
Présentation des différentes interfaces disponibles.
Outils HBase : hbase pe et hbase ltt pour les performances, hbase shell pour l'exploitation
Atelier : gestion de base avec hbase shell.


Mener à bien l’installation
Durée : 4h30
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Choix des paquets. Vérification des pré-requis.
Installation et configuration en mode distribué. Mise en oeuvre avec HDFS dans un environnement distribué.
Test de connexion avec hbase shell.
Atelier : installation d'une grappe de serveurs HBase en mode distribué

Atelier : interrogations depuis le serveur http intégré.


Savoir mettre en place une configuration distribuée
Durée : 4h30
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Fonctionnement en mode distribué
Fonctionnement indépendant des démons (HMaster, HRegionServer, Zookeeper). Gestion de la consistance. Mise en évidence.
Atelier : utilisationn des outils d'exploitation : hbck, hfile, ...

Atelier : mise en oeuvre des splits sur un exemple de tables réparties. regionsplitter.


Paragraphe:Hadoop Cloudera
Hadoop Cloudera
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Les fonctionnalités du framework Hadoop. Les différentes versions.
Distributions : Apache, Cloudera, Hortonworks, EMR, MapR, DSE.
Spécificités de chaque distribution.
Architecture et principe de fonctionnement.
Terminologie : NameNode, DataNode, ResourceManager, NodeManager. Rôle des différents composants. Le projet et les modules : Hadoop Common, HDFS, YARN, Spark, MapReduce, Hue, Oozie, Hive, HBase, Zeppelin, ...
Les outils Hadoop
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Infrastructure/mise en oeuvre : Avro, Ambari, Zookeeper, Tez, Oozie. Vue d'ensemble. Gestion des données. Exemple de sqoop.
Restitution : webhdfs, hive, Hawq, Mahout, ElasticSearch, ...
Outils complémentaires de traitement : Spark, SparkQL, Spark/ML, Storm, BigTop, Zebra; de développement : Cascading, Scalding, Flink; d'analyse : RHadoop, Hama, Chukwa, kafka
Installation et configuration
Durée : 3h
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Présentation de Cloudera Manager.
Installation en mode distribué.
Configuration de l'environnement,étude des fichiers de configuration : core-site.xml, hdfs-site.xml, mapred-site.xml, yarn-site.xml et capacity-scheduler.xml
Création des utilisateurs pour les daemons hdfs et yarn, droits d'accès sur les exécutables et répertoires.
Lancement des services. Démarrage des composants : hdfs, hadoop-daemon, yarn-daemon, ...
Gestion de la grappe, différentes méthodes : ligne de commandes, API Rest, serveur http intégré, APIS natives
Exemples en ligne de commandes avec hdfs, yarn, mapred. Présentation des fonctions offertes par le serveur http
Atelier : organisation et configuration d'une grappe hadoop avec Cloudera Manager


Traitement de données. Requêtage SQL avec Hive et Impala.
Administration Hadoop
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Outils complémentaires à yarn et hdfs : jConsole, jconsole yarn. Exemples sur le suivi de charges, l'analyse des journaux.
Principe de gestion des noeuds.
Principe des accès JMX. Démonstration avec Prométheus.
Administration HDFS : présentation des outils de stockage des fichiers, fsck, dfsadmin
Mise en oeuvre sur des exemples simples de récupération de fichiers. Gestion centralisée de caches avec Cacheadmin.
Gestion de la file d'attente, paramétrage, capacity-scheduler.
Haute disponibilité
Durée : 3h
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Mise en place de la haute disponibilité sur une distribution Cloudera.
Atelier : passage d'un système HDFS en mode HA


Explication d'une fédération de cluster Hadoop. Intérêts.
Sécurité
Durée : 3h
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Mécanismes de sécurité et mise en oeuvre pratique de la sécurité avec Kerberos.
Atelier : mise en place de la sécurité Kerberos sur une distribution Cloudera. Création des utilisateurs. Travaux sur les droits d'accès et les droits d'exécution. Impact au niveau des files Yarn.


Exploitation
Durée : 3h
Méthodes pédagogiques : alternance de théorie et de travaux pratiques
Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux
Installation d'une grappe Hadoop. Lancement des services. Principe de la supervision des éléments par le NodeManager.
Monitoring graphique avec Cloudera Manager.
Atelier : Visualisation des alertes en cas d'indisponibilité d'un noeud.


Configuration des logs avec log4j.
Supervision : définitions
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Les objectifs de la supervision, les techniques disponibles. La supervision d'une ferme BigData.
Objets supervisés. Les services et ressources. Protocoles d'accès. Exporteurs distribués de données.
Définition des ressources à surveiller. Journaux et métriques.
Application aux fermes BigData : Hadoop, Cassandra, HBase, MongoDB
Mise en oeuvre
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Besoin de base de données avec agents distribués, de stockage temporel (timeseriesDB)
Produits : Prometheus, Graphite, Influxdb, ElasticSearch.
Présentation, architectures.
Les sur-couches : Kibana, Grafana.
Graphite
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Composants, architecture
Modèle de données et mesures
Format des données stockées, notion de timestamp
Calculs de l'espace disque nécessaire
Architecture de production.
InfluxDB
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Présentation, structure, évolution, installation
Bucket, token, organisation
Plugin Telegraph, architecture
Interface graphique, alertes, langage flux
Démonstration avec Jolokia2 et Cassandra.
JMX
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Principe des accès JMX. MBeans. Visualisation avec jconsole et jmxterm.
Suivi des performances cassandra : débit d'entrées/sorties, charges, volumes de données, tables, ...
Prometheus
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Installation et configuration de base
Définition des ressources supervisées, des intervalles de collecte
Types de mesures : compteurs, jauges, histogrammes, résumés.
Notions d'instances, de jobs.
Démarrage du serveur Prometheus
Premiers pas dans la console web, et l'interface graphique.
Le langage PromQL
Node Exporter. JMX Exporteur. Mongodb Exporteur.
Démonstration avec Cassandra
Configuration des agents sur les noeuds de calculs. Agrégation des données JMX. Expressions régulières.
Requêtage. Visualisation des données
Comparaison avec Graphite et InfluxDB.
Exploration et visualisation des données
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Mise en oeuvre de Grafana. Installation, configuration.
Pose de filtres sur Prometheus et remontée des données.
Etude des différents types de graphiques disponibles,
Agrégation de données. Appairage des données entre Prométheus et Grafana.
Visualisation et sauvegarde de graphiques,
création de tableaux de bord à partir des graphiques.
Kibana, installation et configuration
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Architectures, paramétrages
Installation, configuration du mapping avec Elasticsearch.
Mapping automatique ou manuel
Démonstration avec Cassandra
Injection des données avec Logstash, Filebeat et Metricbeat.
Configuration des indexes
Exploration des données,création de graphiques, de tableaux de bord
Le scénario
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
La société DataIA rencontre de sérieuses difficultés avec sa toute nouvelle infrastructure BigData : le traitement des données est très lent, ils n'arrivent à aucun résultat dans un temps correct.
Ils décident de se faire aider par une équipe d'administrateurs pour analyser et surveiller les différents composants de leur architecture afin d'en trouver les failles et de proposer des correctifs.
Cette équipe saura-t-elle relever le défi ?
La méthode
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Simulation d'un cas d'étude, avec un travail collaboratif sur des données réelles, accessibles en opendata, et des labs techniques (Prometheus,Graphite, Influxdb, ElasticSearch, ..)
Épreuves personnelles et épreuves en commun vont permettre de contrôler les connaissances et d'échanger entre stagiaires, tout en bénéficiant du soutien et des explications complémentaires du formateur sur les thèmes proposés
Les jeux
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Jeux d'architecture, la techno mystère, l'intrus, les points de faiblesse, etc...
Le debrief
Durée : 1h30
Méthodes pédagogiques : exposé/échanges
Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle
Retour des travaux, bilan des points individuels et classement des joueurs.
Retour d'expérience des participants

Retour au descriptif
Modalités et délais d'accès
Méthodes mobilisées

Pythagore-F.D.

01 55 33 52 10
pfd@pythagore-fd.fr
Calendrier
Code cours : CB095

Contenu de la formation
Cycle certifiant Administrateur BigData:

Accès à la liste des cours



Vous pouvez bien entendu composer votre programme personnel à partir de nos descriptifs de cours


Version du document : Q404
Date de mise à jour du document : 2023/05/04